Roots of Resilience: Bamboo Architecture for a Sustainable World

Bamboo architecture is an exciting and innovative approach to building that is gaining recognition around the world. As we face significant challenges such as climate change, urbanization, and the depletion of natural resources, the need for sustainable building materials has never been more critical. Bamboo, a fast-growing grass, offers a unique solution to these challenges. It is not only strong and flexible but also lightweight, making it an ideal material for construction. Understanding the basics of bamboo architecture is essential for appreciating its potential in creating sustainable living spaces.

Bamboo Forest - Generate with AI

Bamboo Forest – Generate with AI

Bamboo has been used for centuries in various cultures, particularly in Asia and South America. Its rapid growth rate allows it to be harvested in just a few years, unlike traditional timber, which can take decades to mature. This characteristic makes bamboo a renewable resource that can help reduce deforestation and promote sustainable forestry practices. As the global population continues to rise, the demand for housing and infrastructure increases, putting pressure on our planet’s resources. Bamboo can help meet this demand while minimizing environmental impact.

One of the most significant advantages of bamboo is its strength-to-weight ratio. Bamboo is incredibly strong, often compared to steel in terms of tensile strength. This means that structures made from bamboo can be both lightweight and durable, allowing for innovative architectural designs that are not only functional but also aesthetically pleasing. The flexibility of bamboo also makes it resistant to earthquakes and other natural disasters, providing safety and security for those who live in bamboo structures.

In addition to its physical properties, bamboo is also an environmentally friendly material. It absorbs carbon dioxide from the atmosphere, helping to mitigate climate change. By using bamboo in construction, we can reduce our carbon footprint and contribute to a healthier planet. Furthermore, bamboo can be grown in a variety of climates and soil types, making it accessible to many communities around the world. This versatility allows for local sourcing of materials, reducing transportation emissions and supporting local economies.

Bamboo architecture aligns closely with several Sustainable Development Goals (SDGs) established by the United Nations. For instance, it contributes to Goal 11, which aims to make cities and human settlements inclusive, safe, resilient, and sustainable. By incorporating bamboo into urban planning and development, we can create affordable housing solutions that are both environmentally friendly and culturally relevant. Additionally, bamboo supports Goal 12, which focuses on ensuring sustainable consumption and production patterns. By promoting the use of renewable resources like bamboo, we can move towards a more sustainable future.

The use of bamboo in architecture also encourages community involvement and traditional craftsmanship. Many communities have a rich history of working with bamboo, and by reviving these practices, we can empower local artisans and preserve cultural heritage. This not only creates job opportunities but also fosters a sense of pride and ownership within communities. As more architects and builders recognize the potential of bamboo, there is an opportunity to create a new wave of sustainable architecture that honors traditional techniques while embracing modern design principles.

Moreover, bamboo architecture can play a crucial role in disaster relief and recovery efforts. In areas affected by natural disasters, bamboo can be quickly sourced and constructed into temporary shelters. Its lightweight nature allows for rapid assembly, providing immediate housing solutions for those in need. This adaptability makes bamboo an invaluable resource in times of crisis, demonstrating its potential to address urgent humanitarian needs.

As we look to the future, the importance of bamboo architecture cannot be overstated. It represents a shift towards more sustainable building practices that prioritize environmental health and social equity. By embracing bamboo as a primary building material, we can create structures that are not only beautiful and functional but also contribute to the well-being of our planet and its inhabitants. The integration of bamboo into modern architecture is not just a trend; it is a necessary step towards a more sustainable and resilient future.

In conclusion, bamboo architecture offers a promising solution to some of the most pressing challenges we face today. Its unique properties, environmental benefits, and alignment with sustainable development goals make it an essential material for the future of construction. As we continue to explore innovative ways to build and live sustainably, bamboo stands out as a beacon of hope, reminding us that nature can provide the solutions we need to create a better world for generations to come. Embracing bamboo in architecture is not just about building structures; it is about building a sustainable future.

Designing the Future: The Dance of Generative and Regenerative Design

Generative design and regenerative design are two innovative approaches that are reshaping the landscape of architecture and product development. Generative design refers to a design process that uses algorithms and computational methods to generate a wide range of design alternatives based on specific parameters and constraints set by the designer. This approach leverages advanced software to explore numerous possibilities, allowing designers to select the most effective solutions. In contrast, Regenerative design focuses on creating systems that restore and enhance the environment, promoting sustainability and resilience. It emphasizes a holistic approach, considering the ecological, social, and economic impacts of design decisions.

Generative Design Process Diagram

Regenerative Design Process

The processes involved in generative and regenerative design differ significantly. Generative design typically begins with defining the design goals and constraints, followed by the use of software to generate multiple design options. Designers then evaluate these options based on performance criteria, ultimately selecting the most suitable design. On the other hand, regenerative design starts with an assessment of the existing environment and its needs. It involves a collaborative process that engages stakeholders to identify opportunities for restoration and enhancement, leading to the development of design solutions that contribute positively to the ecosystem.

While both approaches aim to improve design outcomes, they have distinct differences. Generative design is primarily focused on efficiency and optimization, often resulting in innovative forms and structures that may not have been conceived through traditional methods. Regenerative design, however, prioritizes ecological health and social equity, seeking to create systems that are self-sustaining and beneficial to the environment. Despite these differences, there are notable similarities; both approaches utilize advanced technology and data analysis to inform design decisions and encourage creativity.

When comparing the advantages and disadvantages of each approach, generative design excels in producing a variety of design options quickly, allowing for rapid prototyping and iteration. However, it may sometimes overlook the broader environmental context, leading to solutions that are efficient but not necessarily sustainable. Conversely, regenerative design fosters a deeper connection with the environment and community, promoting long-term sustainability. However, it can be more time-consuming and complex, requiring extensive collaboration and stakeholder engagement.

The potential for generative and regenerative design to coexist is promising. By integrating the efficiency of generative design with the ecological focus of regenerative design, designers can create solutions that are not only innovative but also environmentally responsible. For instance, generative design can be used to optimize the performance of regenerative systems, ensuring that they function effectively while also contributing to the restoration of the environment.

Suggestion in Combined Generative and Regenerative Design Processes

In conclusion, both generative and regenerative design offer valuable insights and methodologies for creating a more sustainable future. By understanding their definitions, processes, similarities, and differences, designers can leverage the strengths of each approach to develop solutions that are both innovative and restorative.

Generative Design VS Passive Design

Definition and Distinctions Generative design is an iterative process that leverages computational algorithms and software to create optimal designs. Unlike traditional methods relying on human judgment, generative design explores numerous solutions through computation.

In generative design, the designer defines specific goals to achieve a design rather than prescribing exact steps. These goals serve as guiding principles throughout the process.

The computer collaborates with the designer to explore a vast design space. Instead of arriving at a single solution, generative design generates multiple design options, allowing for creativity and efficiency.

The generative design process involves the following steps:

  1. Problem Definition: The designer sets design goals, constraints, and parameters. These may include material properties, structural requirements, manufacturing limitations, and aesthetic preferences.
  2. Algorithmic Exploration: The computer algorithm systematically explores the design space by generating and evaluating various design alternatives. It iteratively adjusts inputs and outputs based on evolving constraints.
  3. Optimization: Through simulation, machine learning, and artificial intelligence, generative design identifies optimal solutions. These solutions balance competing factors (strength, weight, and cost) to achieve the desired outcome.
  4. Human Intervention: The designer remains involved while the process is largely automated. They interpret the generated designs, make informed decisions, and refine the results.

Generative design represents a paradigm shift in how architects approach the creative process, leveraging computational algorithms and artificial intelligence to generate innovative solutions. The benefit and implication of generative design for the architecture process:

  1. Generative design allows architects to generate multiple design options quickly. Each option is evaluated for structural stability, aesthetics, and environmental impact. By automating the exploration of design alternatives, architects can accelerate the design process significantly.
  2. Traditional design methods involve trial and error, with architects manually iterating through various possibilities. Generative design, however, encourages novel solutions that might not be immediately apparent through manual design alone. It helps architects break free from preconceived notions and explore uncharted territory.
  3. Generative design considers material usage minimizing waste. Architects can create designs that use resources more efficiently by optimizing shapes and structures.
  4. The generated designs can also enhance energy performance. For instance, parametric algorithms can optimize building orientations, window placements, and shading devices to maximize natural light while minimizing heat gain.
  5. Generative design adapts to changing requirements. The algorithm can quickly generate new solutions as project constraints evolve, ensuring flexibility throughout the design process.
  6. Architects can explore a vast design space, considering countless variations. This iterative approach leads to unexpected discoveries and unique solutions.
  7. While generative design relies on algorithms, the designer defines the initial parameters and constraints. The software then generates alternatives based on these inputs.
  8. Architects remain actively involved, interpreting the generated designs and making informed decisions. Generative design doesn’t replace human creativity; it amplifies it.
  9. Like any AI-driven process, generative design algorithms can inherit biases in their training data. Architects must be aware of this and ensure fairness.
  10. While automation speeds up the process, architects must strike a balance. Some decisions require nuanced human judgment that algorithms may not fully capture.

Meanwhile, passive design refers to architectural strategies that maximize using natural energy sources and environmental conditions to maintain thermal comfort within buildings. Unlike active systems (such as mechanical heating or cooling), passive design relies on the inherent properties of the site, climate, and building envelope.

Proper building orientation is critical. Architects align structures to respond to the sun’s movement throughout the day and across seasons. Correct orientation maximizes solar gain in winter while minimizing it in summer. South-facing windows capture sunlight while shading devices prevent overheating.

The choice of building materials influences thermal performance. High thermal mass materials (e.g., concrete, rammed earth) absorb and release heat slowly, stabilizing indoor temperatures. Effective insulation minimizes heat transfer through walls, roofs, and floors. Insulated envelopes reduce energy consumption for heating and cooling.

Passive design encourages natural airflow. Adequately placed windows and vents allow fresh air to circulate, reducing reliance on mechanical ventilation. Tall spaces (such as atriums) exploit the stack effect—warm air rising and drawing in cooler air from lower openings.

Shading elements (e.g., overhangs, louvers, vegetation) prevent excessive solar radiation. They maintain comfortable indoor temperatures and reduce cooling loads. Adjustable shading adapts to changing sun angles throughout the day and seasons.

Landscaping plays a role in passive design. Trees, shrubs, and greenery provide shade, buffer wind, and enhance microclimates. Evapotranspiration from vegetation cools the surrounding air.

A hybrid approach—leveraging both generative and passive design principles—often yields optimal results. Architects can use generative tools to explore possibilities and then apply passive strategies to fine-tune the design. Ultimately, the “best” approach depends on project goals, site conditions, and the architect’s vision.

 

Designing Bricks Roster Facade Using Parametric Architecture

Andyrahman Architect combines traditional elements with contemporary design in a Unique Blend of Tradition and Modernity. To create these custom bricks, Andyrahman Architect collaborated with local craftsmen. This initiative reflects the architect’s commitment to promoting local material industries in Indonesia.

The brick tectonic creates a porous facade. This design draws inspiration from traditional Indonesian wall panels called “Gedheg,” made of woven bamboo. The porous arrangement allows for natural ventilation and light penetration, enhancing the indoor environment.

Bricks are made from natural materials (usually clay) and can be produced locally. Their open cell structure stores heat and release it slowly, contributing to energy efficiency. As architects increasingly prioritise sustainability, brick’s eco-friendly attributes will continue to shine.

While stone and concrete may dominate discussions, brick remains timeless. Architects are reimagining brick buildings, experimenting with bonding methods, patterns, and jointing techniques. The result? Striking facades that celebrate the material’s inherent beauty.

Bricks effectively regulate temperature. They keep interiors cool in summer and warm in winter. As climate-conscious design becomes paramount, brick’s thermal properties will remain invaluable.

New generations of architects are finding novel ways to exploit brick’s qualities. Whether combining it with other materials or inventing fresh patterns, brick continues to evolve.

With the advancement of technology, designing bricks as façade materials needs to use parametric architecture, which can quickly produce a certain number of design alternatives.

From video that i found in youtube, https://www.youtube.com/watch?v=bvczZ317Wnw, I try to make a mockup of brick wall that can be an interesting facade, which can be put on the building and the design can be used as secondary wall so the openings still can have an air and a daylight.

Firstly, we need to make a plane with the size that we want. Then using Staggered Quad Panels so we can make bricks pattern on the plane.

Then using dispatch so we can choose which area or which bricks pattern that can be edited.

Then using list item and dispatch to choose each of the bricks that need to process more.

After that process, we can use brep edges, so we can make boundary of the facade.

Then using remap numbers so we can choose which individual brick that we need to rotate based on our needs.

The final process is to extrude the individual bricks.

This is all parameter that we use to make the parametric brick wall.

 

Bamboo Parametric Curve Structure

I got this parametric script from Architutors, one of the YouTube accounts that shares parametric modeling. This is the link to the original parametric modeling: https://www.youtube.com/watch?v=HkE99xfG8CQ.

This is the original parametric script that I tried to build using the script I got from the YouTube link.

This is the result of the parametric script.

On the original script the curve cannot be change using parameter, so i put some changed in the script by using 3 point circle.

Furthermore, i put some change in the circle, so we still can change the parameter the diameter and the height using offset curve and move command.

In essence, this is the total of the parametric script that i have been changed and the result of the parametric modeling.

However, i believe that there is still some changed can be make to the basic curve, from the circle to the polyline arc using PolyArc command for the parameter.

The basic curve changed to be flexible curve that can be changed through the parameter. The result from the script is:

The final parametric script consist of all changed that I have been made is:

 

 

Parametric Modelling – Hibiscus Pavilion

Parametric Modeling is a trend in Architecture right now. This is my first attempt to do this script, which has been provided by an Instagram account called Codin.parametric. This account is part of the Parametric Creators Club on Instagram. One of the contributors, Ogunyemi Oluwabemiga, designed this modeling. He uses Voronoi to randomly put the location of each pavilion around the circle.

Enjoy the script and let’s practice modeling parametric objects.

 

Reciprocal Tower pada Bangunan Bambu Menggunakan Parametric Modelling

Struktur bambu modern mungkin terlihat sangat kuat. Namun, ketika kita mendapatkan lebih banyak pengetahuan tentang prinsip-prinsip struktural yang digunakan dalam bangunan bambu ini, kita akan segera memahami bahwa sebagian besar bangunan menggunakan kombinasi lebih dari satu sistem struktural. Setelah memahami secara logika, kita dapat mengubah pengaturan yang tampak rumit menjadi yang lebih mudah dipahami.

Sangat penting untuk menumbuhkan kreativitas dan menciptakan struktur yang mengawinkan fungsionalitas dan estetika. Kita dapat menemukan cara untuk membangun dengan bambu dan membuat struktur yang menakjubkan. Konstruksi bambu menggunakan sistem struktural berikut:

Post And Beam Structures

Gambar dihasilkan dari AI (Designer)

Post and beam Structures, Biasanya digunakan dalam konstruksi bambu yang dipengaruhi oleh metode framing kayu tradisional. Tiga komponen utama post and beam structures adalah tiang (kolom), balok dan cross bracing. Meningkatkan stabilitas struktur terhadap beban lateral seperti angin dan gaya seismik juga perlu dilakukan. Sistem struktur ini terdiri dari tiang bambu berbentuk bulat. Hasilnya adalah struktur yang menarik dan kokoh.

Hyperbolic Paraboloids

Gambar dihasilkan dari AI (Designer)

Struktur ini menggunakan kombinasi permukaan cekung dan cembung, membedakannya dari bentuk “pelana” yang khas. Konfigurasi di mana dua segmen linier tumpang tindih di setiap titik adalah hasilnya, yang menghasilkan fenomena visual yang menarik.

Karena kelengkungan permukaannya, cangkang dapat mendukung bobot berat dalam ukuran yang luas. Dengan ciri-ciri ini, struktur ini sangat cocok untuk struktur atap.

Reciprocal (Twisted) Tower

Gambar dihasilkan dari AI (Designer)

Reciprocal Tower memiliki bentuk membangkitkan hyperboloid yang mirip dengan Hyperbolic Paraboloid. Namun, formasi geometrinya berbeda, karena Reciprocal Tower memerlukan rotasi hyperbolic di sekitar sumbu tertentu, yang membentuk hyperboloid dengan lembaran tunggal, berbeda dengan Hyperbolic Paraboloid, yang memiliki permukaan yang dikendalikan oleh dua garis.

Ada baiknya membuat prototipe sebelum memulai pembangunan menara hyperbolic. Setelah melakukan langkah awal ini, kita akan dapat memahami hasilnya dengan jelas, yang akan membantu untuk menetapkan pengukuran yang benar untuk lingkaran dasar, bagian tengah, dan atas menara. Sangat penting untuk memahami bahwa kriteria ini saling terkait dan berdampak besar pada ketinggian akhir bangunan. Oleh karena itu, sangat penting untuk melakukan pemeriksaan komprehensif terlebih dahulu terhadap hal ini. Selain itu, proses perencanaan dapat disederhanakan dengan menggunakan pendekatan desain dengan menggunakan perangkat komputer.

Spatial Gridshells

Gambar dihasilkan dari AI (Designer)

Berkat kemungkinan tak terbatas dari bahan ini, konstruksi bambu secara konsisten menantang batas-batas inovasi. Kisi bambu split yang ringan dan tahan lama digunakan untuk membangun struktur ini. Patahan ini, baik yang muncul secara alami atau dibangun dengan sengaja dalam bentuk tertentu, membentuk struktur yang menarik, terkadang menyerupai kubah. Karena kemampuan mereka untuk menghasilkan bentuk melengkung yang anggun yang menunjukkan daya tahan yang sangat baik, sistem struktural gridshell sangat disukai dalam arsitektur bambu kontemporer. Selain itu, gridshells dapat membangun area yang luas dan tidak terhalang, yang menghilangkan kebutuhan dari tiang-tiang tambahan.

Dalam membuat prototipe bangunan dengan struktur bambu, kita dapat menggunakan aplikasi Grasshopper. Berikut ini adalah contoh penggunaan Grasshopper dalam membuat model Reciprocal Tower Sederhana.

Dengan menghasilkan bentukan, seperti:

 

Parametric Modelling pada Jembatan dengan Arsitektur Bambu

Untuk memulai membuat model jembatan dengan arsitektur bambu pada parametric modelling, diperlukan 2 titik sebagai panduan untuk membuat landasan dengan menggunakan perintah Construct Point dan menentukan pilihan titik dengan menggunakan perintah List Item.

Selanjutnya dari titik landasan tersebut, dengan menggunakan perintah Box dibuat landasan untuk berdirinya jembatan.

Dari landasan tersebut  dengan menggunakan perintah Deconstruct Brep ditentukan garis sebagai panduan titik nantinya yang di pilih dengan menggunakan perintah List Item, kemudian dibuat garis dengan menyambungkan titik-titik tersebut sebagai panduan.

Setelah di buat titik panduan, kemudian dibuat garis lengkung dengan menggunakan perintah Interpolate, dengan menyambungkan titik-titik yang telah ditentukan tadi.

Kemudian dari garis-garis lengkung tadi, dipilih beberapa titik dengan menggunakan perintah List Item, agar dapat memandu pembuatan garis-garis lengkung lainnya.

Kemudian, dengan menggunakan Catenary dan dengan panduan garis lengkung awal, dibuat garis-garis lengkung lainnya.

Setelah itu dibuat rangka-rangka support pada garis lengkung dengan memilih titik pada garis lengkung dan membuat garis dengan perintah Line.

Setelah semua garis lengkung dan garis rangka terbangun, kemudian digunakan perintah Pipe untuk membentuk batangan bambu yang terjalin.

Untuk menyelesaikan rangka jembatan bambu, maka digunakan perintah Move, untuk menambah rangka pada sisi yang berlawanan.

Setelah itu, untuk lantai pada jembatan digunakan perintah extrude, dengan memilih titik pada ujung box yang digunakan sebagai landasan.

Adapun berikut ini adalah rangkaian dari perintah dari Grasshopper yang di gunakan.

Selamat berbambu ria menggunakan parametric modelling.

Inspirasi modelling ini diambil dari https://www.youtube.com/watch?v=FXmmQrwdqFw&list=PLnnW6BO_SVjdi_3dbWOU_3VqYOm2LK2DI&index=2

 

 

 

 

Arsitektur Bambu yang Men-Support Sustainable Development Goals

Bambu, sumber daya yang sangat mudah beradaptasi dan terbarukan, telah menjadi elemen mendasar dalam mencapai pembangunan berkelanjutan, memberikan pendekatan yang solid untuk menangani berbagai Sustainable Development Goals (SGD) dari Perserikatan Bangsa-Bangsa. Karena tingkat pertumbuhannya yang cepat, biaya rendah, dan ketahanan, sangat cocok untuk konstruksi berkelanjutan. Hal ini sejalan dengan SDG 11, yang bertujuan untuk menciptakan kota dan komunitas yang berkelanjutan dengan menawarkan alternatif perumahan yang murah dan tangguh. Bambu dapat mendorong kemajuan ekonomi di daerah pedesaan, sehingga mendukung SDG 1 dengan mengentaskan kemiskinan dan memfasilitasi kemajuan ekonomi dengan menghasilkan kesempatan kerja di sektor bambu.

Bambu menawarkan banyak keuntungan lingkungan. Ini adalah jenis rumput yang berkembang pesat yang dapat dipanen tanpa penanaman kembali, sehingga mengurangi deforestasi dan memberikan kontribusi positif terhadap SDG 15, yang secara eksplisit menargetkan ekosistem darat. Kapasitas penyerapan karbon bambu yang tinggi sejalan dengan SDG 13, aksi iklim, karena membantu mengurangi dampak efek rumah kaca. Selain itu, sistem perakaran tanaman yang luas bertindak sebagai penghalang terhadap erosi tanah, oleh karena itu menjaga kualitas tanah dan berkontribusi pada pencapaian SDG 6, yang berfokus pada air bersih dan sanitasi, dengan menjaga kebersihan sumber air.

Fungsi bambu dalam energi terbarukan sangat signifikan. Bambu dapat dikonversi menjadi biofuel, sumber energi berkelanjutan yang mempromosikan SDG 7, memastikan akses ke energi yang terjangkau dan bersih. Hal ini dapat mengurangi ketergantungan pada bahan bakar fosil dan berkontribusi untuk mengurangi emisi karbon. Dalam hal konsumsi dan produksi yang bertanggung jawab, SDG 12, bambu menyediakan pengganti untuk kayu dan bahan lain secara berkelanjutan yang membutuhkan lebih banyak energi, mendorong ekonomi sirkular dan meminimalkan limbah.

Konsekuensi sosial dari arsitektur bambu memiliki signifikansi yang sama. Arsitektur bambu mendukung inklusi dan kesetaraan dengan menawarkan bahan bangunan yang hemat biaya, mencapai SDG 10, yang berfokus pada pengurangan ketidaksetaraan. Ini menjamin bahwa perumahan berkelanjutan tersedia untuk semua orang, terutama populasi yang paling rentan. Selain itu, menerapkan teknik konstruksi bambu dapat dengan mudah disebarluaskan, memberdayakan penduduk lokal dengan keahlian dan informasi baru, sehingga memberikan kontribusi yang berharga bagi SDG 4, yang berfokus pada peningkatan pendidikan berkualitas.

Dalam industri, inovasi, dan infrastruktur, bambu muncul sebagai bahan yang mendorong pendekatan inventif untuk metode dan desain konstruksi. Fleksibilitas dan kekuatan bahan ini telah berfungsi sebagai sumber inspirasi bagi arsitek dan insinyur, mengarahkan mereka untuk menyelidiki pendekatan bangunan baru yang mencapai daya tarik visual dan integritas struktural. Penggabungan bambu dalam arsitektur kontemporer mencontohkan adaptasi inovatif dari bahan konvensional untuk mengatasi kebutuhan masa kini dan dilema ekologis.

Signifikansi budaya bambu tidak boleh diremehkan. Di berbagai wilayah, menggabungkan adat istiadat dan ritual lokal mempromosikan SDG 16, yang berfokus pada perdamaian, keadilan, dan institusi yang kuat dengan menumbuhkan rasa identitas dan kontinuitas yang kuat. Arsitek dapat menghormati dan menjaga warisan budaya dengan memasukkan bambu ke dalam desain arsitektur sambil mempromosikan pertumbuhan yang berkelanjutan.

Pada akhirnya, bambu berfungsi sebagai jawaban serbaguna dan komprehensif untuk isu-isu rumit pembangunan berkelanjutan. Menerapkan arsitektur dan konstruksi untuk mencapai berbagai Sustainable Development Goals (SGD) secara bersamaan adalah layak. Dengan mengadopsi bambu sebagai sumber daya strategis, masyarakat internasional dapat membuat kemajuan signifikan dalam mencapai masa depan berkelanjutan yang bertanggung jawab terhadap lingkungan, inklusif secara sosial, dan layak secara ekonomi. Saat kita mendekati tenggat waktu 2030 untuk Sustainable Development Goals (SGD), bambu berfungsi sebagai bukti kapasitas bahan alami untuk merevolusi lingkungan kita yang dibangun dan komunitas global secara keseluruhan.

Form Alternatives from Parametric Modeling

Sebagai seorang desainer atau arsitek, memahami pemodelan parametrik sangat penting. Kita dapat membuat desain yang dapat diubah dengan mudah dengan menggunakan alat seperti Grasshopper.

Pemodelan parametrik melibatkan penggunaan parameter dan aturan matematika untuk membuat bentuk dan desain yang dapat disesuaikan dengan perubahan. Ini memungkinkan kita untuk membuat model yang dapat diubah dengan cepat dan efisien.

Grasshopper memiliki beberapa komponen penting yang harus dipahami:
Panel: Komponen ini memungkinkan kita melihat isi dan struktur data dari output komponen dalam teks. Ini juga membantu kita memeriksa jumlah item dan tipe data sebelum menghubungkannya ke komponen lain.
Number Slider: Komponen ini memungkinkan kita dengan mudah mengatur nilai numerik, seperti panjang kurva atau parameter lainnya.
Expression Editor: Tempat kita menulis ekspresi atau rumus matematika yang menghubungkan parameter. Dengannya, kita dapat membuat hubungan kompleks antara parameter.

Sebagai akibat dari desain parametrik yang dapat lebih mudah mengubah desain, dengan menggunakan parameter, kita dapat lebih banyak menghasilkan alternatif-alternatif desain bangunan. Selain itu dengan menggunakan grasshopper sebagai permodellan parametrik, kita juga dapat lebih leluasa dalam mendesain bangunan-bangunan yang kompleks, sesuai dengan trend gaya arsitektur saat ini.

Berikut adalah permodellan parametrik yang dihasilkan oleh mahasiswa semester 5, pada tahun 2023 di Program Studi Arsitektur, Universitas Medan Area:

Parameter pada Grasshopper untuk bentukan dan bentukan yang dapat dihasilkannya, yang dibuat oleh Haniyah Adelia Batubara (218140013)